mftrees package

Submodules

mftrees.features module

mftrees.features.feature_vector(sample, bins)

Compute a discretized, radially averaged Fourier power spectra for use as a feature vector.

Parameters
  • sample (ndarray) – Input image as a 2-D ndarray

  • bins (ndarray) – ndarray with same dimensions as _sample_, containing the integer bin label for each element in _sample_.

Returns

float64 1-D ndarray with length np.unique(bins).size

Return type

ndarray

mftrees.features.fmap(block_size)

Construct a wavelength map for a FFT output with dimensions of block_size

mftrees.features.full_feature_vector(sample, bins)

Compute and concatenate feature vectors across all image bands in (c, h, w) form

Parameters
  • sample (ndarray) – Input image as a 2-D ndarray

  • bins (ndarray) – ndarray with same dimensions as _sample_, containing the integer bin label for each element in _sample_.

mftrees.features.spectrum(arr)

Compute a 2-D Fourier power spectra of an image, based on a unitary forward FFT

Parameters

arr (ndarray) – Input image as a 2-D ndarray

Returns

float64 ndarray with same dimensions as _arr_ containing the Fourier power spectra. Low frequency components are shifted to the center of the image.

Return type

ndarray

mftrees.util module

mftrees.util.all_equal(arg1, arg2)

Shortcut function to compute element-wise equality between two iterables

Parameters
  • arg1 (iterable) – Any iterable sequence

  • arg2 (iterable) – Any iterable sequence that has the same length as arg1

Returns

True if each pair of elements are equal. Otherwise, False

Return type

bool

mftrees.util.create_histmatcher(img, ref)

Create a function that will histogram match pieces of a source image with a target image, incrementally

Parameters
  • img (ndarray) – NumPy array containing the image data to transform

  • ref (ndarray) – Numpy array containing the reference image data for the transformation

Returns

A function that takes a 2-D NumPy array to be transformed

Return type

function

mftrees.util.r2(y_pred, y, w=1.0)

Compute generalized Pearson’s R^2, with optional weights

Parameters
  • y_pred (ndarray) – NumPy array of predicted values

  • y (ndarray) – NumPy array of true values the same length and dimensionality as y_pred

  • w (float or ndarray, optional) – Weights for each sample (default is 1.0)

Module contents